A class of high-resolution algorithms for incompressible flows

نویسنده

  • Long Lee
چکیده

We present a class of a high-resolution Godunov-type algorithms for solving flow problems governed by the incompressible Navier-Stokes equations. The algorithms use high-resolution finite volume methods developed in SIAM J. Numer. Anal., 33, (1996) 627-665 for the advective terms and finite difference methods for the diffusion and the Poisson pressure equation. The high-resolution algorithm advects the cell-centered velocities using the divergence-free cell edge velocities. The resulting cell-centered velocity is then updated by the solution of the Poisson equation. The algorithms are proven to be robust for constantdensity flows at high Reynolds numbers via an example of lid-driven cavity flow. With a slight modification for the projection operator in the constant-density solvers, the algorithms also solve incompressible flows with finite-amplitude density variation. The strength of such algorithms is illustrated through problems like Rayleigh-Taylor instability and the Boussinesq equations for Rayleigh-Bénard convection. Numerical studies of the convergence and order of accuracy for the velocity field are provided. While simulations for two-dimensional regular-geometry problems are presented in this study, in principle, extension of the algorithms to three dimensions with complex geometry is feasible. keywords: high-resolution, finite volume methods, incompressible Navier-Stokes equations, finite-amplitude density variation, liddriven cavity flow, Rayleigh-Taylor instability, Rayleigh-Bénard convection

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extension Ability of Reduced Order Model of Unsteady Incompressible Flows Using a Combination of POD and Fourier Modes

In this article, an improved reduced order modelling approach, based on the proper orthogonal decomposition (POD) method, is presented. After projecting the governing equations of flow dynamics along the POD modes, a dynamical system was obtained. Normally, the classical reduced order models do not predict accurate time variations of flow variables due to some reasons. The response of the dynam...

متن کامل

Three-dimensional characteristic approach for incompressible thermo-flows and influence of artificial compressibility parameter

In this paper the characteristics of unsteady three-dimensional incompressible flows with heat transfer are obtained along with artificial compressibility of Chorin. At first, compatibility equations and pseudo characteristics for three-dimensional flows are derived from five governing equations (continuity equation, Momentum equations in three directions, and energy equation) and then results ...

متن کامل

A preconditioned solver for sharp resolution of multiphase flows at all Mach numbers

A preconditioned five-equation two-phase model coupled with an interface sharpening technique is introduced for simulation of a wide range of multiphase flows with both high and low Mach regimes. Harten-Lax-van Leer-Contact (HLLC) Riemann solver is implemented for solving the discretized equations while tangent of hyperbola for interface capturing (THINC) interface sharpening method is applied ...

متن کامل

External and Internal Incompressible Viscous Flows Computation using Taylor Series Expansion and Least Square based Lattice Boltzmann Method

The lattice Boltzmann method (LBM) has recently become an alternative and promising computational fluid dynamics approach for simulating complex fluid flows. Despite its enormous success in many practical applications, the standard LBM is restricted to the lattice uniformity in the physical space. This is the main drawback of the standard LBM for flow problems with complex geometry. Several app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010